Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Pollut Res ; 13(12): 101620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474671

RESUMO

Policies to improve air quality need to be based on effective plans for reducing anthropogenic emissions. In 2020, the outbreak of COVID-19 pandemic resulted in significant reductions of anthropogenic pollutant emissions, offering an unexpected opportunity to observe their consequences on ambient concentrations. Taking the national lockdown occurred in Italy between March and May 2020 as a case study, this work tries to infer if and what lessons may be learnt concerning the impact of emission reduction policies on air quality. Variations of NO2, O3, PM10 and PM2.5 concentrations were calculated from numerical model simulations obtained with business as usual and lockdown specific emissions. Both simulations were performed at national level with a horizontal resolution of 4 km, and at local level on the capital city Rome at 1 km resolution. Simulated concentrations showed a good agreement with in-situ observations, confirming the modelling systems capability to reproduce the effects of emission reductions on ambient concentration variations, which differ according to the individual air pollutant. We found a general reduction of pollutant concentrations except for ozone, that experienced an increase in Rome and in the other urban areas, and a decrease elsewhere. The obtained results suggest that acting on precursor emissions, even with sharp reductions like those experienced during the lockdown, may lead to significant, albeit complex, reduction patterns for secondary pollutant concentrations. Therefore, to be more effective, reduction measures should be carefully selected, involving more sectors than those related to mobility, such as residential and agriculture, and integrated on different scales.

2.
Occup Environ Med ; 79(3): 192-199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35012995

RESUMO

OBJECTIVES: To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city. METHODS: Citizens of Varese aged ≥18 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1 µg/m3 increase in air pollutants from single- and bi-pollutant Poisson regression models. RESULTS: The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5 µg/m3. Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95% CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models. CONCLUSIONS: Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Exposição Ambiental/análise , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Características de Residência , Fatores de Tempo , População Urbana
3.
Sci Total Environ ; 807(Pt 3): 151034, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34666080

RESUMO

BACKGROUND/AIM: The relationship between air pollution and respiratory morbidity has been widely addressed in urban and metropolitan areas but little is known about the effects in non-urban settings. Our aim was to assess the short-term effects of PM10 and PM2.5 on respiratory admissions in the whole country of Italy during 2006-2015. METHODS: We estimated daily PM concentrations at the municipality level using satellite data and spatiotemporal predictors. We collected daily counts of respiratory hospital admissions for each Italian municipality. We considered five different outcomes: all respiratory diseases, asthma, chronic obstructive pulmonary disease (COPD), lower and upper respiratory tract infections (LRTI and URTI). Meta-analysis of province-specific estimates obtained by time-series models, adjusting for temperature, humidity and other confounders, was applied to extrapolate national estimates for each outcome. At last, we tested for effect modification by sex, age, period, and urbanization score. Analyses for PM2.5 were restricted to 2013-2015 cause the goodness of fit of exposure estimation. RESULTS: A total of 4,154,887 respiratory admission were registered during 2006-2015, of which 29% for LRTI, 12% for COPD, 6% for URTI, and 3% for asthma. Daily mean PM10 and PM2.5 concentrations over the study period were 23.3 and 17 µg/m3, respectively. For each 10 µg/m3 increases in PM10 and PM2.5 at lag 0-5 days, we found excess risks of total respiratory diseases equal to 1.20% (95% confidence intervals, 0.92, 1.49) and 1.22% (0.76, 1.68), respectively. The effects for the specific diseases were similar, with the strongest ones for asthma and COPD. Higher effects were found in the elderly and in less urbanized areas. CONCLUSIONS: Short-term exposure to PM is harmful for the respiratory system throughout an entire country, especially in elderly patients. Strong effects can be found also in less urbanized areas.


Assuntos
Poluição do Ar , Material Particulado , Idoso , Poluição do Ar/estatística & dados numéricos , Hospitalização , Humanos , Itália/epidemiologia , Material Particulado/efeitos adversos , Urbanização
4.
Environ Sci Technol ; 36(22): 4707-13, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12487289

RESUMO

In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.


Assuntos
Chuva Ácida , Poluentes Atmosféricos/análise , Efeito Estufa , Dióxido de Enxofre/análise , Ásia , Carvão Mineral , Comércio , Monitoramento Ambiental , Incineração , Indústrias , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...